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INTRODUCTION

Productivity in many large river-floodplain systems is 
driven by an annual flood pulse that creates lateral hydrologic 
connectivity, connects the main river channel to isolated backwater 
and floodplain habitats, and provides a mechanism of energy and 
nutrient transfer between the aquatic and terrestrial zones, which 
enhances biological productivity and supports high levels of 
fisheries production (Junk et al. 1989; Bayley 1995). Additionally, 
the spatial and temporal extent of floodplain inundation influences 
water quality, aquatic species diversity, and overall biomass 
production in large river-floodplain systems (Junk et al. 1989; Sabo 
et al. 1999a, 1999b; Lindholm et al. 2007; Gorski et al. 2011; Alford 
and Walker 2013). Floodplain inundation provides important 
foraging and spawning opportunities for many fishes (Rutherford 
et al. 2001; Eggleton et al. 2016) and crayfish (Bonvillain et al. 
2013; Kong et al. 2019) that have life history strategies adapted to 
exploit seasonal flooding periods of large river-floodplains. 

Although the timing, magnitude, and duration of the flood 
pulse varies annually, the Mississippi River typically inundates 
the adjacent floodplain in the spring and dewaters from summer 

to early fall. The historic lower Mississippi River floodplain once 
compromised more than 101,000 km2, however, anthropogenic 
modifications for flood protection and navigation have reduced the 
current floodplain to less than 10% of its historic size (Schramm 
and Ickes 2016). In Louisiana, levee construction, distributary 
closures, and flood control structures along the Mississippi River 
have altered the natural hydrologic regime and disconnected 
historic floodplains from Mississippi River inputs. 

The Atchafalaya River Basin (ARB) and Barataria Basin 
(BB) in south Louisiana are Mississippi River floodplain systems 
separated by approximately 25 km (Figure 1). Both basins are 
characterized by shallow headwater and backwater lakes, cypress-
tupelo swamps, and numerous natural bayous and excavated 
canals. The ARB and BB both historically received waters from the 
annual Mississippi River flood pulse and shared similar hydrologic 
regimes. However, anthropogenic modifications have altered the 
historic connectivity of these basins with the Mississippi River and 
changed the hydrologic functionality between the basins. 

The ARB is approximately 25–35 km wide and is bounded by 
protection levees that restrict the floodplain to 26% of its historic 
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A B S T R A C T

Anthropogenic modifications to river-floodplain systems can decouple floodplains from mainstem 
inputs, alter flood pulse dynamics, and disrupt population dynamics and trophic web stability of aquatic 
biota. The Atchafalaya River Basin (ARB) receives an annual flood pulse from the Mississippi River that 
contributes to high crayfish abundance. Conversely, reduced crayfish abundance in the Barataria Basin 
(BB) is attributed to the system no longer receiving an annual flood pulse from the Mississippi River. 
Therefore, the purpose of this research was to determine if the absence of an annual flood pulse and 
reduced crayfish abundance influenced the diets of carnivorous fishes by examining stomach contents 
of fishes from both basins. Stomach contents were grouped as crayfish, fish, non-crayfish invertebrate, 
and herpetological. Although the percent occurrence of crayfish in fish stomachs differed between 
floodplain inundation and low-water periods in the ARB, crayfish were still the major diet constituent of 
ARB fishes during both periods. Non-crayfish invertebrate was the major diet constituent in BB fishes, 
with crayfish ranking as the second fewest diet constituent present. Our results demonstrate how flood 
pulse dynamics influence crayfish, and ultimately trophic webs, in large river-floodplain systems.
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range (Ford and Nyman 2011). However, the ARB still receives 
an annual flood pulse from the Mississippi River through the 
Atchafalaya River, the major distributary of the Mississippi River. 
The Atchafalaya River receives 30% of the combined volumes of 
the Red and Mississippi Rivers through two water control structures 
and a hydropower channel regulated by the US Army Corps of 
Engineers. Water levels in the ARB reflect Mississippi River level 
fluctuations and floodplain inundation typically occurs in the 
spring with drawdown in summer (Bonvillain et al. 2008). The 
seasonal floodplain inundation and drawdown provides optimal 
conditions that coincide with crayfish life history characteristics, 
specifically red swamp crayfish Procambarus clarkii (Girard) and 
southern white river crayfish Procambarus zonangulus (Hobbs and 
Hobbs), and supports the largest wild crayfish harvest in Louisiana 
(Bonvillain et al. 2013; Kong et al. 2019). 

The BB is the historic southernmost western floodplain of the 
Mississippi River and historically received an annual flood pulse 

from the Mississippi River. However, distributary closures and 
construction of the Mississippi River levee system have decoupled 
the BB from the Mississippi River and eliminated the annual 
flood pulse from entering the system. Currently, BB floodplain 
habitats, located in the most inland reaches of the BB, only 
become inundated during large or prolonged precipitation events 
(Nelson et al. 2002). Precipitation-driven floodplain inundation 
events produce acute inundation events throughout the year that 
do not necessarily coincide with the life history (i.e., spawning 
season) of many floodplain dependent species and restricts 
access to floodplain habitats used by aquatic biota for spawning 
and forage (Balcombe and Arthington 2009; Ballinger 2018; 
Rixner 2018). Furthermore, the lack of an annual flood pulse and 
episodic floodplain inundation events experienced in the BB have 
diminished P. clarkii abundance in this system (Ballinger 2018).

Crayfish are key components in various aquatic trophic webs 
and are an important dietary constituent in many carnivorous 

Figure 1. The Atchafalaya River Basin (grey) and Barataria Basin (black) in south Louisiana. Boxes within each basin indicate study area.
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fishes. Both piscivorous fishes including gar, bowfin, crappie, bass, 
and catfish (Lambou 1961; Ashley and Rachels 1999; Garvey et al. 
2003; Sammons 2012; Walker et al. 2013) and insectivorous fishes 
including bluegill, warmouth, and freshwater drum (Wahl et al. 
1988; Roth et al. 2007; Miller et al. 2015) consume crayfish, and 
depending on habitat characteristics and prey availability, crayfish 
can comprise a considerable portion of ingested prey (Crowl 1989; 
Hickley et al. 2002; Rixner 2018). Although crayfish provide less 
useable caloric content per gram than other invertebrates and 
fishes, they are likely more energetically important prey items 
in large river-floodplains because of high densities (Stein 1977; 
Rabeni 1992).

Seasonal floodplain inundation periods in large river-
floodplains drive biotic productivity and influence aquatic trophic 
web dynamics. The hydrologic regime of the flood pulse affects 
predator and prey resources and interactions, trophic web energy 
fluxes, aquatic biota diet composition, and aquatic biota success 
(Rutherford et al. 2001; de Mérona and Rankin-de-Mérona 2004; 
Lindholm et al. 2007; Luz-Agostinho et al. 2008; Bonvillain et 
al. 2013; Kong et al. 2019). Furthermore, floodplain inundation 
periods provide seasonal variations in food resources and a larger 
diet breadth for fishes (Balcombe et al. 2005). In the ARB, the 
annual flood pulse contributes to its high crayfish production 
(Bonvillain et al. 2013), which produces over 90% of the wild 
crayfish harvest in Louisiana (Isaacs and Lavergne 2010). 

Crayfish can be a major diet component of carnivorous fish 
in the Mississippi River floodplain system (Miller et al. 2015). 
Because floodplain inundation from the annual ARB flood pulse 
provides conditions that support high crayfish abundance, fishes in 
this system have access to an abundant prey source. Conversely, 
the absence of an annual flood pulse and consistent seasonal 
floodplain inundation in the BB has reduced crayfish abundance, 
an important prey item in floodplain trophic webs, which can 
lead to diet shifts in many carnivorous fishes (Luz-Agostinho et 
al. 2008). Therefore, the objective of this study was to determine 
if the absence of an annual flood pulse and reduced crayfish 
abundance influenced the diets of carnivorous fishes. Specifically, 
we examined the stomach contents of fishes from the ARB and BB 
during multiple research projects and in the ARB during floodplain 
inundation and low-water periods. 

MATERIALS AND METHODS

 Fishes examined for this study were collected as a part of three 
separate research endeavors in the ARB and BB between 2006 and 
2018. Study 1 collected fishes monthly in the BB from October 
2006 to September 2007, study 2 collected fishes bi-monthly in the 
ARB from March 2008 to July 2009, and study 3 collected fishes 
monthly in the ARB and BB from August 2017 to April 2018. 
Sample locations in all studies were located in natural bayous and 
excavated canals, and the same locations were sampled during low-
water (late summer to winter) and floodplain inundation periods 
(spring to summer) in the ARB. Fishes in study 1 were collected 
with 35 mm monofilament gill nets fished for one hour. Fishes 
in studies 2 and 3 were collected via boat electrofishing with a 
Smith-Root 7.5 Generator Powered Pulsator electrofisher system. 
During all three studies, adult carnivorous fishes were placed on 

ice and transported back to the laboratory for stomach analysis. 
Whole stomachs were removed, placed into individual labeled 
Hubco cloth sample bags, and placed into storage containers with 
75% ethanol until examination. Stomach contents were identified 
to the lowest taxonomic group possible, but were grouped into 
one of four categories: crayfish, fish, non-crayfish invertebrate, 
or herpetological (reptile or amphibian). Multiple diet categories 
were recorded present when more than one diet item was present in 
a fish. Stomach contents data from all studies were pooled by basin 
for analyses. Chi-square tests were used to examine differences in 
each diet category between basins. Floodplain inundation in the 
ARB was determined when the Atchafalaya River stage at Butte 
La Rose, Louisiana (US Army Corps of Engineers gauge 03120) 
was greater than 2.5 m and floodplain habitats in the study area 
began to experience overbank flooding (Bonvillain et al. 2013). 

RESULTS

We examined the stomach contents of 463 and 652 adult 
carnivorous fishes from the ARB and BB, respectively. In the ARB, 
275 and 188 fishes were examined in studies 2 and 3, respectively, 
and 401 and 251 BB fishes were examined in studies 1 and 3, 
respectively. Fishes with stomach contents included 210 (45% 
with contents, 55% empty stomachs) individuals from the ARB 
and 333 individuals (51% with contents, 49% empty stomachs) 
from the BB comprising 17 species (Table 1). Crayfish was the 
major diet constituent in ARB fishes and was found in 61% of 
individuals with stomach contents. The second most abundant 
item found in ARB fish stomachs was fish (28%), followed by 
non-crayfish invertebrates (22%), and herpetological (1%; Figure 

Table 1. Fish species sampled for stomach contents in the Atchafalaya 
River Basin (ARB) and Barataria Basin (BB).

Species Common Name Basin

Ameiurus melas (Rafinesque) Black bullhead BB
Ameiurus natalis (Lesueur) Yellow bullhead BB
Amia calva Linnaeus Bowfin Both
Aplodinotus grunniens Rafinesque Freshwater drum ARB
Ictalurus furcatus (Valenciennes) Blue catfish Both
Ictalurus punctatus (Rafinesque) Channel catfish Both
Lepisosteus oculatus Winchell Spotted gar Both
Lepisosteus osseus (Linnaeus) Longnose gar ARB
Lepomis gulosus (Cuvier) Warmouth Both
Lepomis macrochirus Rafinesque Bluegill Both
Lepomis megalotis (Rafinesque) Longear sunfish ARB
Lepomis microlophus (Günther) Redear sunfish Both
Lepomis punctatus (Valenciennes) Spotted sunfish ARB
Micropterus salmoides (Lacepède) Largemouth bass Both
Morone chrysops (Rafinesque) White bass ARB
Morone mississippiensis Jordan and 

Eigenmann
Yellow bass ARB

Pomoxis nigromaculatus (Lesueur) Black crappie Both
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2). Conversely, with the exception of herpetological (8%), diet 
constituents of BB fishes exhibited an inverse trend compared to 
the ARB with non-crayfish invertebrate as the major constituent 
(42%) followed by fish (39%) and crayfish (34%; Figure 2). 
Crayfish were significantly more abundant (χ2 = 37.21, P < 0.001) 

in ARB fish diets compared to BB fishes. Conversely, fish (χ2 
= 6.45, P = 0.011), non-crayfish invertebrates (χ2 = 21.02, P < 
0.001), and herps (χ2 = 11.71, P < 0.001) were significantly more 
abundant in BB fish diets compared to ARB fish. 

Fish collection efficiency declined during ARB floodplain 
inundation periods as habitat availability increased and fish 
presumably moved onto the inundated floodplain for spawning and 
feeding opportunities (Bonvillain et al. 2008).  Forty-four fishes 
were collected during ARB floodplain inundation periods and 
419 fishes were collected during low-water periods for stomach 
content examination. During floodplain inundation, 75% of fishes 
sampled had contents in their stomachs, however, less than half 
of fishes (48%) had stomach contents during low-water periods 
(Figure 3). Additionally, during floodplain inundation periods, 
crayfish was the principal diet constituent, found in 75% of fishes 
with stomach contents followed by fish (20%) and non-crayfish 
invertebrates (9%; Figure 4). No herpetological stomach contents 
were found in fishes during floodplain inundation periods. During 
low-water periods, crayfish was still the main diet constituent 
(54%) followed by fish (41%), non-crayfish invertebrates (23%), 
and herpetological (10%; Figure 4). 

DISCUSSION

The annual flood pulse is a key component that drives biotic 
biomass production in large river-floodplain systems and supports 
the largest wild crayfish harvest in Louisiana. However, the absence 
of a flood pulse and the different hydrologic regime experienced 
in the BB influences river-floodplain interaction and ultimately 
crayfish abundance and the availability of prey resources for fishes 
(Ballinger 2018). Ballinger (2018) sampled eleven times more 
crayfish in the ARB compared to the BB during the same temporal 
period. The large crayfish abundance supported in the ARB provides 
carnivorous fishes with a food rich environment which can act as a 
stabilizing force for food web dynamics (Kovalenko 2019). 

Crayfish were the major diet constituent of ARB fishes sampled, 
even during low-water periods. This supports previous ARB fish 
diet studies that revealed crayfish as a major diet constituent in 
Amia calva (Linnaeus; bowfin), Lepisosteus oculatus (Winchell; 
spotted gar), and centrarchids (Lambou 1961; Dugas et al. 1976; 
Miller et al. 2015; Rixner 2018). Crayfish are likely a non-limiting 
floodplain resource in the ARB during floodplain inundation 
periods, and the abundance of crayfish may benefit fish populations 
and trophic web stability several ways. The abundance of ARB 
crayfish provides a prey resource that is the most profitable food 
resource (Correa and Winemiller 2014) and optimally exploited 
by fishes (Stein 1977) and is the most energetically important 
dietary constituent for many fishes (Rabeni 1992). Furthermore, 
the high abundance of crayfish likely limits competition among 
fishes and reduces negative consequences of niche overlap (Correa 
and Winemiller 2014). Lastly, crayfish abundance reduces fish 
predation on other aquatic animals and increases aquatic trophic 
web stability and ecosystem resilience (Kovalenko 2019). 

Floodplain inundation is an environmental cue for crayfish 
to emerge from burrow habitats and provides peak crayfish 
abundance periods in the ARB (Bonvillain et al. 2013; Kong et 

Figure 2. Percent of diet constituents in fishes sampled with stomach 
contents in the Atchafalaya River Basin (ARB) and Barataria Basin (BB).

Figure 3. Percent of fishes sampled in the Atchafalaya River Basin with 
empty stomachs and stomach contents during floodplain inundation and 
low-water periods.

Figure 4. Percent of diet constituents in Atchafalaya River Basin fishes 
sampled with stomach contents during floodplain inundation and low-
water periods.
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al. 2019). Fish consume different prey resources in frequencies 
that are influenced by hydrological seasonality (Correa and 
Winemiller 2014). This was evident during floodplain inundation 
periods when crayfish abundance was high and 75% of fishes 
with stomach contents contained crayfish, and 75% of the total 
fishes sampled contained stomach contents. Dugas et al. (1976) 
observed similar trends in Amia calva sampled in the ARB. 
During floodplain inundation periods, crayfish provide a prey 
resource pulse that likely contributes to an opportunistic change 
in carnivorous fish foraging behavior (Balcombe et al. 2005; 
Kovalenko 2019). Although the amount of crayfish present in fish 
stomachs decreased and fish, non-crayfish invertebrates, and herps 
increased during low water periods, crayfish was still the major 
diet constituent in carnivorous fishes sampled. Most P. clarkii and 
P. zonangulus will retreat to burrows as water levels recede from 
the floodplain, however, individuals can still be found in wetted 
areas throughout the year (Bonvillain 2012). However, variation 
in carnivorous fish diets occurred as food resources changed and 
water levels and crayfish resource availability decreased. During 
low-water periods, dietary shifts were evident as fishes consumed 
more fish, non-crayfish invertebrate, and herpetological resources 
with only a little more than half of the fishes sampled (52%) that 
contained stomach contents, similar to results observed by other 
ARB dietary studies (Lambou 1961; Dugas et al. 1976). Dietary 
shifts in fishes are common in river-floodplain systems as the 
availability of habitat and food resources decline during low-water 
periods (de Mérona and Rankin-de-Mérona 2004; Balcombe et 
al. 2005; Grosholz and Gallo 2006; Luz-Agostinho et al. 2008; 
Correa and Winemiller 2014). 

The absence of an annual flood pulse in the BB reduces aquatic 
and terrestrial zone interactions, which results in negative impacts 
to aquatic biota, including reduced spatial habitat heterogeneity, 
greater temporal instability, restriction to floodplain resources, 
reduced energy inputs to fish production, and asynchrony between 
life history characteristics and floodplain inundation (Lindholm et 
al. 2007; Eggleton et al. 2016). The acute, asynchronous floodplain 
inundation regime experienced in the BB has reduced fish 
reproduction (Davis 2006; Rixner 2018) and crayfish abundance 
and individual size (Ballinger 2018). Although diminished fish 
reproductive success and prey resources have been observed 
in the BB, the BB and ARB still share similar fish assemblages 
(Wallace 2018). Additionally, reductions in floodplain inundation 
and connectance in the lower Mississippi River have resulted in 
few fish species extinctions (Eggleton et al. 2016). However, the 
reduced crayfish abundance in the BB has potentially altered the 
trophic dynamics in this system. Food consumption of fishes in 
the BB (51% of fishes sampled contained stomach contents) was 
comparable to low-water periods in the ARB (43%). Additionally, 
the percent of fish found in BB fish stomach contents (39%) was 
similar to fishes in the ARB during low-water periods (41%). 
However, it appears that BB fishes alter their feeding behavior 
and ingest more non-crayfish invertebrate and herpetological prey 
resources to compensate for reduced crayfish availability. Shifts 
in BB fish diets, compared to the ARB, can increase predation on 
other trophic groups and impact prey populations (Grosholz and 
Gallo 2006) and increase competition through diet overlap (Luz-
Agostinho et al. 2007). 

Although there are inherent limitations in the stomach content 
data presented in this paper, e.g., fishes collected with both active 
and passive sampling techniques and during different temporal 
periods, it provides a broad representation of carnivorous fish diets 
in the ARB and BB. Gear type can influence presence or absence 
of fish stomach contents through differences in regurgitation or 
bias towards actively foraging individuals (Hayward et al. 1989; 
Sutton et al. 2004; Garvey and Chipps 2012). However, the current 
study does not compare presence/absence of fish stomach contents 
between basins but simply examines diet composition in fishes 
with stomach contents present, which the authors consider was 
not influenced by gear type from extensive sampling experience. 
Additionally, flood pulse dynamics can affect crayfish abundance 
and fish community structure in the ARB and BB (Bonvillain et al. 
2013; Grosch 2015; Ballinger 2018; Kong et al. 2019). However, 
both basins experienced basin-specific, typical hydrologic regimes 
(Bonvillain et al. 2008; Ballinger 2018) during all three temporal 
periods examined in this study, and fish diet composition is likely 
representative of both basins during most years. Additionally, 
although water quality fluctuates spatially and temporally in both 
basins, physicochemistry, including dissolved oxygen and salinity, 
at sample areas within the ARB and BB are similar (Bonvillain 
et al. 2013; Eddlemon and Boopathy 2013; Ballinger 2018; 
Rixner 2018; Wallace 2018). Finally, it should be noted that diet 
composition may be biased for crayfish as exoskeleton remains 
take longer to digest and fish larvae are rapidly digested by many 
fishes (Kim and DeVries 2001; Garvey and Chipps 2012). 

The high crayfish abundance in the ARB provides fishes with 
a presumably non-limiting food resource, particularly during 
floodplain inundation periods, and reduces dependence on other 
aquatic prey organisms. Fishes typically have more specialized 
diets when resources, such as crayfish, are abundant and broaden 
their diets during periods of reduced food availability, e.g., ARB 
low-water periods and the BB (Correa and Winemiller 2014). 
Aquatic trophic webs change in response to anthropogenic 
habitat alterations (Kovalenko 2019), and the elimination of the 
annual flood pulse in the BB has reduced crayfish abundance and 
potentially altered the trophic dynamics in this system. Pre-levee 
construction biotic and abiotic empirical data in the BB is sparse 
and it is impossible to know what the diet composition of BB fishes 
looked like before hydrologic modifications. However, many of 
the biotic and abiotic differences observed between the ARB and 
BB are directly or indirectly attributed to the different hydrologic 
regimes/flood pulse characteristics experienced in both basins 
(Reed 1995; Grosch 2015; Ballinger 2018; Rixner 2018; Wallace 
2018). Our results demonstrate the importance of crayfish as a diet 
constituent in carnivorous fishes and the potential consequences 
of anthropogenic hydrologic modifications on trophic webs in 
the BB. This information is critical to stakeholders and resource 
managers as restoration projects to improve water flow in the ARB 
and reintroduce Mississippi River waters in the BB move forward 
(Piazza 2014; CPRA 2017).  
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